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A B S T R A C T

This paper presents an approach for Structure from Motion (SfM) for unorganized complex image sets. To
achieve high accuracy and robustness, image triplets are employed and an (approximate) internal camera ca-
libration is assumed to be known. The complexity of an image set is determined by the camera configurations
which may include wide as well as weak baselines.
Wide baselines occur for instance when terrestrial images and images from small Unmanned Aerial Systems

(UAS) are combined. The resulting large (geometric/radiometric) distortions between images make image
matching difficult possibly leading to an incomplete result. Weak baselines mean an insufficient distance be-
tween cameras compared to the distance of the observed scene and give rise to critical camera configurations.
Inappropriate handling of such configurations may lead to various problems in triangulation-based SfM up to
total failure.
The focus of our approach lies on a complete linking of images even in case of wide or weak baselines. We do

not rely on any additional information such as camera configurations, Global Positioning System (GPS) or an
Inertial Navigation System (INS). As basis for generating suitable triplets to link the images, an iterative graph-
based method is employed formulating image linking as the search for a terminal Steiner minimum tree in the
line graph. SIFT (Lowe, 2004) descriptors are embedded into Hamming space for fast image similarity ranking.
This is employed to limit the number of pairs to be geometrically verified by a computationally and more
complex wide baseline matching method (Mayer et al., 2012). Critical camera configurations which are not
suitable for geometric verification are detected by means of classification (Michelini and Mayer, 2019).
Additionally, we propose a graph-based approach for the optimization of the hierarchical merging of triplets to
efficiently generate larger image subsets.
By this means, a complete, 3D reconstruction of the scene is obtained. Experiments demonstrate that the

approach is able to produce reliable orientation for large image sets comprising wide as well as weak baseline
configurations.

1. Introduction

Recent developments for Structure from Motion (SfM) or sparse 3D
reconstruction techniques from unorganized image sets focus on large
(Internet) photo collections (Heinly et al., 2015; Crandall et al., 2011;
Frahm et al., 2010; Havlena et al., 2010; Agarwal et al., 2009; Snavely
et al., 2008). They can contain millions of images, yet, often comprising
a very high redundancy and moderate baselines. In contrast to these
large photo collections, we focus on image sets with up to a few
thousand images, but containing complex camera configurations com-
prising wide as well as weak baselines between images.

In our case, wide baselines often arise when terrestrial images and
imagery taken from small Unmanned Aerial Systems (UAS) are com-
bined. Failure to handle wide baselines can lead to incomplete SfM

resulting in multiple disconnected reconstructions. On the other hand,
weak baselines occur if the translation between image acquisitions is
insufficient in relation to the distance to the observed scene. Such
camera configurations are termed critical because they lead to a poor
intersection geometry, which becomes undefined in case of zero base-
line (i.e., pure rotation). Thus, an inappropriate handling of weak
baselines can result in inaccurate or even failing orientation estimation
and sparse 3D reconstruction.

A crucial step during SfM is the merging of image pairs or triplets
with consistent geometry into larger image subsets with a common
reference frame. The result is usually optimized by means of bundle
adjustment (Triggs et al., 2000), which is a computationally intensive
non-linear optimization method. Hence, hierarchical merging techni-
ques (Toldo et al., 2015; Mayer, 2014; Gherardi et al., 2010; Farenzena
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et al., 2009; Fitzgibbon and Zisserman, 1998) are applied to improve
the efficiency. This way, disjoint image subsets can be merged in-
dependently and, thus, in parallel, improving the runtime on systems
with multiple parallel processing units.

The aim of our approach is an efficient, complete and reliable
linking of the entire image set even for complex configurations com-
prising wide as well as weak baselines. No additional information like
camera configuration, Global Positioning System (GPS) or Inertial
Navigation System (INS) is used. An overview of the processing stages is
given in Fig. 1.

Input is an (unorganized) image set with an (approximate) internal
camera calibration. Based on this, we start with image preprocessing
where multi-resolution image pyramids are generated and SIFT features
(Lowe, 2004) are extracted using GPU-acceleration (Wu, 2012). In the
next stage, a graph-based method (Michelini and Mayer, 2016) estab-
lishes the links between the images (Section 3) employing a classifi-
cation-based approach (Michelini and Mayer, 2019) for the detection of
critical camera configurations. The wide baseline method (Mayer et al.,
2012) is used for geometric verifications providing robustness even in
case of large radiometric or geometric image distortions. Based on
image linkage, a novel graph-based optimization strategy improves the
efficiency of the subsequent hierarchical merging of image subsets
(Section 4). In the last stage, relative camera orientations as well as the
sparse 3D structure are determined using hierarchical merging (Mayer,
2014). Data exchange between processing stages is accomplished by
means of a database.

Results which demonstrate the potential of our SfM approach on
real-world datasets as well as in comparison to other state-of-the-art
frameworks are presented in Section 5. Finally, in Section 6 conclusions
are given.

2. Related work

Fitzgibbon and Zisserman (1998) as well as Koch et al. (1998)
presented pioneering works dealing with SfM in image sequences.
Later, Schaffalitzky and Zisserman (2002) have shown, that automatic
SfM is achievable for general camera configurations without additional
information (e.g., about the sequence). Snavely et al. (2006) introduced
the Framework Photo Tourism, which can deal with larger image sets
and could produce high quality results. However, it has a high runtime
due to the employed exhaustive image matching and sequential image
merging. An improved version of Photo Tourism is known as Bundler1

and is often used for benchmarks to evaluate the achievable quality of

other approaches.
Subsequent approaches focused, among other things, on further

improvement of the efficiency. Snavely et al. (2008) formulated the
problem depending on the scene complexity instead of the number of
images. Li et al. (2008) employed clustering to reduce the complexity,
Agarwal et al. (2009) used a computer cluster to accelerate the pro-
cessing, whereas Frahm et al. (2010) have utilized the massive paral-
lelization of graphic cards. Finally, Heinly et al. (2015) have shown,
that with an efficient implementation on a highly parallel system, even
millions of images can be processed in a few days.

The most commonly used method to reduce the combinatorial
complexity is pruning of the image set (Li et al., 2008; Frahm et al.,
2010; Philbin and Zisserman, 2008; Havlena et al., 2013). Recent ap-
proaches for large photo collections (Havlena and Schindler, 2014;
Agarwal et al., 2009; Klopschitz et al., 2010) use quantized local fea-
tures (Sivic and Zisserman, 2003) indexed by a vocabulary tree (Nistér
and Stewenius, 2006) to reduce the complexity. Acceleration of
matching itself using GPU was employed in Wu (2012) and Frahm et al.
(2010). Holistic features (Oliva and Torralba, 2001) indexed by com-
pact hashing codes (Raginsky and Lazebnik, 2009; Torralba et al.,
2008) were utilized in Frahm et al. (2010) to reduce the memory
consumption and speed up the matching. Also dimension reduction (Cai
et al., 2011; Ke and Sukthankar, 2004) or embedding (Cheng et al.,
2014; Strecha et al., 2012; Jegou et al., 2008; Torralba et al., 2008) of
feature descriptors were employed.

Relations between images are often described using weighted
graphs, where nodes correspond to images and an edge between nodes
exists if the corresponding images are related based on the desired
geometric properties. The edge weights describe the quality of the re-
lations. For example, this can be the number of correspondences be-
tween the images (Schaffalitzky and Zisserman, 2002; Li et al., 2008;
Jiang et al., 2013; Toldo et al., 2015) or the uncertainty of the estimated
camera orientations (Snavely et al., 2008). In addition, complex hy-
pergraphs2 were used in Ni and Dellaert (2012).

Usually, undirected weighted graphs are employed for modeling
(Schaffalitzky and Zisserman, 2002; Steele and Egbert, 2006; Zach
et al., 2008; Philbin and Zisserman, 2008; Zach et al., 2010; Moulon
et al., 2013; Toldo et al., 2015). There exist also approaches which use
directed graphs (Snavely et al., 2008; Irschara et al., 2011; Wefelscheid,
2013; Wilson and Snavely, 2014) allowing for a more accurate mod-
eling, but requiring a larger effort for the determination of the asym-
metric relations.

Fig. 1. Structure from Motion Pipeline.

1 www.cs.cornell.edu/snavely/bundler.

2 A hypergraph is a generalization of a graph in which an edge, called hyper-
edge, can be incident with any number of nodes.
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Methods based on undirected graphs often employ minimal/max-
imal spanning trees to determine the processing order for images
(Schaffalitzky and Zisserman, 2002; Steele and Egbert, 2006; Zach
et al., 2008; Klopschitz et al., 2010; Zach et al., 2010; Toldo et al.,
2015). In addition to spanning trees, also other graph-theoretic con-
cepts like normalized graph cuts (Li et al., 2008), minimal dominating
sets (Havlena et al., 2010), graph spectra (Heath et al., 2010; Kim et al.,
2012) or betweenness centrality (Wefelscheid, 2013) were employed.

In the following, we describe our approach for linking images based
on their estimated similarities and propose an optimization method for
hierarchical merging of image subsets.

3. Image linking

Image linking describes the relations between images and, thus, im-
plies knowledge about their overlap (i.e., the projection of the same
parts of a scene). The latter is usually derived from feature corre-
spondences, i.e., by means of image matching (Hartmann et al., 2016).
Yet, because of the high combinatorial complexity, exhaustive image
matching is not practical even for small image sets.

In addition, knowledge about geometric relations between images is
in our case purely based on image features. Thus, the ability to find
correspondences even between images with large geometric or radio-
metric distortions (e.g., caused by wide baselines or different acquisi-
tion times) is highly desirable. Unfortunately, the establishment of
correspondences in these cases requires complex algorithms with a
strongly negative influence on the scalability of SfM. Applying accel-
erations techniques similar to Schönberger et al. (2015) and Raguram
et al. (2012) is not suitable in our case, because they make the geo-
metric verification faster but less robust against complex configurations
which we intend to handle.

A vocabulary tree (Nistér and Stewenius, 2006) is often used to
reduce the combinatorial complexity in large image sets. It is a special
data structure which scales well, but requires an explicit training and
parameter fine tuning (number of clusters and tree depth) to achieve
satisfying accuracy and efficiency (Irschara et al., 2011). Instead, we,
thus, employ a fast image similarity estimation method described in
Section 3.1. That way, potentially overlapping images are filtered based
on their estimated similarities and it is sufficient to perform complex
geometric verifications by means of wide baseline matching (Mayer
et al., 2012) only for a small subset.

To improve robustness and accuracy, image triplets instead of pairs
are employed (Moulon et al., 2013; Klopschitz et al., 2010). However,
the usage of triplets increases the complexity and, thus, we estimate the
geometry for pairs first and derive triplets afterwards based on the in-
formation from the pairs. A theoretically well founded modeling for the
latter is proposed in Sections 3.2 and 3.3 allowing for efficient sparse
image linking. Finally, the density of image links is increased by means
of loop closing described in Section 3.4 to further improve the stability
of SfM.

3.1. Image similarity estimation

Image linking is based on pairwise relations between images.
However, an accurate estimation of these relations is extremely time-
consuming for larger image sets due to the quadratic complexity. Even
acceleration techniques like (Wu, 2012) which utilize parallel proces-
sing on modern graphic cards, scale insufficiently.

We estimate similarities between images by matching their SIFT
features (Lowe, 2004) employing the Jaccard index (Jaccard, 1912) as a
relative similarity score to rank the images. The Jaccard index i jJ( , ) is
defined as

=i j
M M
M M

J , ,i j

i j (1)

where Mi and Mj are the feature sets of the images i and j and M Mi j
the resulting correspondence set. It is later used in Section 3.3 to decide
what images are to be linked.

Because we are only interested in relative similarities, a simplified
matching can be used as long as the approximation errors are small or
distributed evenly. To this end, a matching based on feature descriptors
embedded from real space 128 into Hamming space = {0, 1}128 128 is
employed. This allows an efficient comparison using the Hamming
distance

= =
=

u v u v u v
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i i
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where u and v are SIFT descriptors with their elements ui and vi. The
XOR bit operation is followed by bit counting to determine the
number of different bit positions. Modern processors have integrated
accelerated functions (Streaming SIMD Extensions – SSE) for both op-
erations allowing for a very efficient comparison.

Descriptor embedding itself is based on the concept of orthants,
which are the generalization of quadrants in two-dimensional to mul-
tidimensional space. A 128-dimensional descriptor space 128 can be
partitioned by 128 independent (affine) hyperplanes in 128. Each hy-
perplane goes through the intersection point p 128 and separates 128

into two half-spaces, termed the positive and the negative half-space.
For the embedding one needs to define the 128 hyperplanes. The values
of the normalized descriptor lie in the range 0 to 1.

The origin p is not a good choice for the intersection point =p 0 of
the hyperplanes and, thus, must be determined to ensure an appropriate
embedding. For this, the median of all descriptor values is computed for
each dimension i and used as the ith coordinate of the intersection point
p.

Intersections of 128 mutually orthogonal half-spaces then determine
2128 orthants. Every orthant is determined by a sequence of 128 plus or
minus signs, where the ith sign indicates whether the orthant is in the
positive or negative half-space of the ith hyperplane. Thus, an orthant in

128 corresponding to the SIFT descriptor can be represented by a
compact bit vector of length 128.

Matching of the embedded descriptors then means determining the
number of corresponding half-spaces, instead of computing the
Euclidean distance or cosine similarity in case of the original de-
scriptors. On one hand, this provides only a rough approximation of the
true correspondences. On the other hand, the comparison of embedded
descriptors reduces the matching runtime drastically allowing for an
exhaustive matching and, thus, an accuracy improvement. In addition,
even more accurate image similarities only provide a limited benefit
due to other relevant factors like image overlap, feature distribution or
intersection geometry. Hence, the proposed image similarity estimation
provides an efficient and meaningful way to reduce the number of ex-
pensive geometric verifications.

3.2. Modeling of relations between images

We describe relations between images by an undirected weighted
image graph (IG), where nodes correspond to images and edges connect
pairs of images that overlap. Edge weights and potential overlap are
determined by the image similarities estimated using the approach
described in the previous section.

Because our image linking is based on triplets, higher order re-
lationships are required which the image graph with its pairwise re-
lationships is lacking. In addition, we use pairs for geometry propaga-
tion throughout linking (see Section 4), meaning that linkable triplets
must have two images in common. An image graph cannot model this
constraint either. Thus, we employ a modeling based on the line graph
of the image graph which can describe linking using triplets and allows
for geometry propagation via pairs.

The line graph L G( ) of an undirected graph G has as set of nodes the
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edges of G. Two nodes in L G( ) are adjacent iff they have exactly one
node of G in common. Given the incidence matrix RG of graph G, the
adjacency matrix AL G( ) of the corresponding line graph L G( ) is given by

=A R R I2L G G
T

G( ) (3)

with I the identity matrix. Each node i in G with degree di generates di

nodes as well as ( )d
2
i connections in the line graph L G( ). It follows, that

the cardinality of the edge set of L G( ) is highly related to the density of
G.

The line graph of the image graph IG is termed pair graph (PG),
because it contains nodes corresponding to pairs of overlapping images.
Two nodes in PG are adjacent if their corresponding pairs have an
image with an overlapping region in common, yielding a triplet. By this
means, a traversal through PG implicitly corresponds to linking triplets
using pairs for geometry propagation.

By extending PG to explicitly represent the images, the linking graph
(LG) is constructed. It comprises two node types corresponding to the
nodes of IG (image nodes) and PG (pair nodes), as shown in Fig. 2. An
image and a pair node are adjacent if the pair node contains the image
corresponding to the image node. Because the image nodes are only
required to model the image linking, there exist no edges between
them.

An unweighted LG models potential links in the form of triplets
between the images. The quality of those links can be described by
weighting its edges. The quality of a particular link depends on the
quality of the corresponding triplet, whose quality is in turn determined
by the quality of the pairs it consists of. Thus, the weighting of the LG
aims at selecting suitable links for reliable image linking based solely on
the information about the pairs.

The roundness XR( ) of a reconstructed 3D point X has been pro-
posed in Beder and Steffen (2006) as the basis to measure the stability
of a pair P. For each reconstructed 3D point the eigenvalues ,x x

1 2 and
x

3 of the corresponding covariance matrix are computed. The round-
ness is then defined by

=XR( )
x

x
3

1 (4)

with x x x
1 2 3 . It lies between 0 and 1 and depends only on the

relative geometry between cameras and image features. For coincident
camera centers and correct feature correspondences, it is equal to zero.

Beder and Steffen (2006) have defined the stability of P by the mean
roundness over the set of all reconstructed 3D points XP of the pair.
Unfortunately, a pair with high stability can comprise only a few cor-
respondences, which may be insufficient for triplet construction. This
can result from a wide baseline between the images, implying a good
intersection geometry, but only very few correspondences (e.g., due to
image distortions or occlusions). On the other hand, the number of
correspondences alone is also not a suitable quality score, because high

numbers can arise for critical configurations (cf. Section 1). However,
the combination of both provides a quality score

= XXQ( ) R( ),
X

P
XP (5)

which incorporates the number of correspondences as well as their
quality. By this means, a large image overlap can be enforced together
with a stable camera geometry.

Besides the number of correspondences, their distribution across the
images is important as well. A direct incorporation into the quality
score is difficult due to the employed geometrical verification which
uses different image resolutions for pairs and triplets. Therefore, we
incorporate the feature distribution indirectly by considering only
features which are contained in the threefold overlap area of the tri-
plet’s images.

Let Fb be the feature set of an image b. The convex hull FH( )b around
the features of Fb describes the area in b covered by them. However, this
is not a robust measure of coverage because any extreme feature point,
i.e., close to the corners of the image, yields a large area. Thus, we filter
these extreme points out by iteratively determining the convex hull and
removing points of the hull if there are less than three other points in
their neighborhood. The latter is defined by the median distance be-
tween points. The result is a (reduced) convex hull FH*( )b providing a
robust coverage measure.

The feature correspondences of a pair P form the feature set FP
consisting of features in both images and F FH*( )P b the overlapping
region in image b P with respect to P. The correspondences of pairs
from a pair set define the overlapping area

=b F FO( ) H*( )
P P b

P b
(6)

in image b P with P . Let e be an edge between pair nodes u and v
in the LG corresponding to pairs Pu and Pv. e itself corresponds to the
triplet =T P P P( )u v e , the common image of Pu and Pv, or the pair

=P P P P P( ) ( )e u v u v . The weight function e( ) for an edge e between
the pair nodes is defined as

=e F F( ) min[Q( ( )), Q( ( ))],P P
3 3
u v (7)

where

= x x xF F b P P P{ O( { , , })}P P
b P

u v e
3

(8)

are feature correspondences of a pair P corresponding to the threefold
correspondences of T and

: 2 3 (9)

is the mapping of 2D feature points to the corresponding (re-
constructed) 3D points of the pair. This way, only the quality of pairs Pu

Fig. 2. Image graph with corresponding pair and linking graph. The pair graph corresponds to the line graph of the image graph describing relations between image
pairs. Adding nodes of the image graph to the pair graph results in the linking graph, where rectangles represent the image and ellipses the pair nodes.
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and Pv is considered due to their primary influence on the quality of T.
In order to incorporate the overlap between all images of a triplet, the
relevant 3D points of Pu and Pv are restricted to the threefold overlap
area of the triplet’s images.

Edges incident with the image nodes contain no additional in-
formation, but can be used for the selection of appropriate pair nodes.
Thus, we weight them using the quality QP from Eq. (5) corresponding
to the pair node connected to the image node.

We employ the weighted LG to describe the linking between the
images including the link quality. However, the LG can contain many
redundant links, which can also be of varying stability concerning or-
ientation estimation. The latter means, that triplets used for linking can
be more or less stable, e.g., due to short baselines between their images.
Thus, using all triplets would increase the runtime without a significant
benefit and may even have a negative influence on the stability of the
final result.

For this reason, we introduce the concept of a block as a linking
subgraph containing stable links employed for the hierarchical merging
(Section 4). Here, stability means robustness against poor intersection
geometry affecting the quality of orientation estimation. The size of a
block specifies the number of images linked, where a block is termed
complete if it links all images of the image set. The block density is the
number of triplets used for linking.

3.3. Determination of image links

The IG is constructed based on the estimated image similarities
(Section 3.1). Thus, an edge between nodes exists only if the corre-
sponding images have a sufficiently high similarity score given by the
Jaccard index.

The LG can be directly constructed from the IG. However, this
would result in a very dense LG unnecessarily increasing the com-
plexity. Thus, only a subset of the most promising pairs corresponding
to the edges of the maximum spanning tree (MST) in the IG is em-
ployed. To ensure their geometric consistency, selected pairs are ver-
ified using the wide baseline matching method (Mayer et al., 2012) and
then classified using a random forest (Michelini and Mayer, 2019) in
order to detect critical configurations (cf. Section 1). Pairs with in-
consistent geometry or classified as unstable are removed from IG and
the construction of a new MST is initiated. Finally, the LG is constructed
by deriving the line graph from the MST.

Having a weighted LG, we can determine a block of minimum
density to link the images. This is formulated as search for a terminal
Steiner minimum tree (Lin and Xue, 2002): Given an undirected
weighted Graph =G V E( , ) and a subset R V of nodes (terminals), a
Steiner tree is an acyclic subgraph of G that spans all terminals. Other
nodes V R are termed Steiner nodes. The weight of a Steiner tree is the
sum of the weights of all its edges. The Steiner tree problem is concerned
with the determination of a Steiner tree with minimum weight in G. A
Steiner tree is a terminal Steiner tree if all terminals are leaves of the
Steiner tree. In the context of LG the image nodes correspond to the
terminals and the pair nodes to the Steiner nodes.

The terminal Steiner minimum tree of the LG determines the block
of minimum density. As the terminal Steiner problem has been shown
to be NP-complete (Lin and Xue, 2002), an approximation (Chen, 2011)
is employed. The geometric consistency of triplets selected by a block is
again verified using the wide baseline matching method (Mayer et al.,
2012). Inconsistent triplets are removed from the LG and the con-
struction of a new terminal Steiner minimum tree is initiated.

Missing triplets may lead to the construction of multiple incomplete
blocks. This is because a block described by an LG depends on the
presence of triplets sharing two images. This requirement can be re-
laxed after the block construction to two arbitrary images which do not
form an instable pair. This way, two incomplete blocks comprising any
two common images forming a suitable pair can be merged into a single
block. By applying this procedure recursively, a complete block is

constructed in the optimal case.

3.4. Loop closing

An image sequence consists of sequentially arranged images with
pairwise links in between. Images at the ends of the sequence are
termed end images. If these overlap, the sequence forms an image loop.
Loop closing is a method for detecting and linking end images in order to
close image loops.

Inaccuracies in 3D points usually arise due to inexact feature loca-
lization as well as approximate intrinsic camera parameters. Their ac-
cumulation during the merging of image subsets (Section 4) may lead to
a significant deviation of the estimated orientations compared to
ground-truth (Steedly et al., 2003). The longer the image sequence, the
larger the magnitude of the deviation. Thus, an appropriate loop closing
must be applied to ensure a reliable SfM.

Unfortunately, the pair graph of a block (Section 3.2) is a tree,
which is not able to implicitly model closed image loops. Hence, we
employ the graph structure of a block together with (roughly) estimated
camera orientations to efficiently search for end images and to close the
loops.

Closing loops in short image sequences leads to no significant im-
provements (Repko and Pollefeys, 2005), but increases the time and
effort for the determination of necessary image links. For this reason,
we introduce a threshold lmin specifying the minimum length of a clo-
sable image sequence. The length of an image sequence ls with end
images b1 and b2 is related to the length of the path lp between the image
nodes corresponding to b1 and b2. The relation is given by =l l 2s p
taking the two edges between image and pair nodes into account.

The detection of a potential image loop is formulated as the search
for overlapping end images of an image sequence. In order to be able to
detect loops even in complex image sets, each image is considered as
potential end image. Starting from an end image b1

=B b b b l b b b{ l( , ) ( , ) }b min b1 11 1 (10)

with

= b b b d b b s{ d( , ) s( , ) }b b b1 11 1 1 (11)

gives the set of images suitable as the second end image b2, which to-
gether with b1 determines a sequence and a potential image loop.

b bl( , )1 is the length of the sequence between b1 and b l, min the minimum
length and 1 a scale factor described below. specifies the view
direction angle difference of the cameras, d the Euclidean distance and s
the estimated image similarity (cf. Section 3.1) between b1 and b. Fi-
nally, an image b B Bb b1 1 is considered as the most suitable end
image b2 if it is spatially close to b1 and forms the longest sequence with
it:

= =B b b b b barg max l( , ) and arg min d( , )b
b B b B

1 2 1
b b

1
1 1 (12)

Eq. (10) comprises a spatial and a similarity search. The former
increases the probability of overlap employing the (roughly) known
camera orientations. They are estimated efficiently using hierarchical
merging of image subsets (Section 4) without the time-consuming
bundle adjustment. Based on it, b bd( , )1 in Eq. (11) gives the Euclidean
distance between the camera positions of images b1 and b and their
view angle difference. The restriction of the latter using the threshold
especially serves to exclude images with opposite viewing directions.
The threshold db1 ensures spatial proximity. Due to its dependency on
the environment of b1, a uniform threshold cannot be applied. The
reasons are varying scales between image subsets as well as camera
displacements for which a uniform threshold would select either too
many or not enough images.

Therefore, an appropriate environment of b1 is derived from the
paths from the image node corresponding to b1 to other image nodes in
the block. The path length l can be employed as indication for the
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Euclidean distance, though a longer path does not necessarily imply a
larger Euclidean distance. Restricting the environment of b1 using the
distance threshold ld, we determine db1 from the Euclidean distances to
images lying on the paths:

=d b bmax d ,b
b b b l:l( , )

1
d

1
1 (13)

To obtain a meaningful value for db1, only paths to images inside of
the vicinity are to be considered. This is accomplished by the threshold
ld, which, in contrast to db1, does not depend on the camera config-
uration. For =l 1d , db1 is given by distances to images contained in the
same triplet as b1. In general, the probability of including images from
the vicinity decreases with an increasing value of ld.

Long image sequences may cause large geometric deviations and,
thus, erroneously large distances between its end images. In this case,
the spatial search is not able to determine end images without the ad-
justment of the threshold db1. However, a higher value of db1 would
unnecessarily increase the complexity of the search. Therefore, we
employ image similarities to additionally consider all images with
sufficiently high similarity sb1 to b1 as potential second end images. The
threshold sb1 is given by the minimal similarity between images, whose
corresponding image nodes are adjacent to the image node corre-
sponding to b1.

The minimum loop length remains fixed during the spatial search,
i.e., = 1 in Eq. (10). However, the similarity search requires an ad-
justment of the scale factor to > 1 to restrict the number of image
candidates. Because large geometric deviations occur only in long
image sequences and the similarity search is designed exclusively for
such cases, the increase of the minimum loop length provides a
meaningful method for complexity reduction. This way, only similar
images, which are far away in the block, are considered as potential end
images.

The block may comprise multiple image loops, where some of them
could be subsets of larger loops (see Fig. 3). Closing all loops in a large
image set with many sub-loops is very time-consuming. However,
closing only the largest loops may be insufficient to rectify the geo-
metric deviations. Therefore, we strive to close only sub-loops which
are significant for the correction of geometric deviations. Based on the
threshold lmin the largest independent loops are identified and closed.
The number of remaining sub-loops to close is reduced afterwards using
the modified weight function

=l l f* ( ) exp( )e e
2 (14)

for all edges of the block. The function reduces the weight depending on
the number of loops le an edge e is involved in. By this means, sub-loops
of already closed loops become less relevant. The damping factor

< f0 1 is employed to restrict the number of sub-loops, where =f 0
means no restriction. In general, the lower the value of f, the more sub-
loops are included.

4. Hierarchical merging of image subsets

Starting from known links in the form of triplets, images are merged

to larger image subsets transforming the camera orientations into a
common reference frame. We employ the hierarchical merging of
Mayer (2014), which allows image subsets to grow independently from
each other. This offers the opportunity to utilize parallel architectures
by performing merging in parallel. However, while the reduction of 3D
points with the aim of reducing the merging runtime was the focus in
Mayer (2014), here we propose an extension in the form of an opti-
mization strategy to improve the efficiency by better exploiting the
parallel architectures.

4.1. Hierarchical merging

An image subset (IS) consisting of =n IS images is written as n-IS,
where IS specifies the cardinality. Starting with triplets as 3-IS, the first
merging step generates 4-IS. In general, image subsets ISi and ISj with kij
common images are merged into an + k( IS IS )i j ij -IS. The trans-
formation into a common reference frame is achieved by applying a
(rigid) Euclidean transformation in relation to one IS using two
common images to determine the scale factor. Thus, a necessary condi-
tion for merging two IS is the existence of at least two common images
with sufficient baseline, i.e., k 2ij . A sufficient baseline is ensured
using the classification-based approach for the detection of critical
camera configurations (Michelini and Mayer, 2019).

After transformation into a common reference frame, 3D points are
transferred and the result is optimized by means of robust bundle ad-
justment (Mayer et al., 2012). The accuracy of the 3D points depends on
the number of observations, i.e., the number of images containing the
projection of the points (Triggs et al., 2000). Therefore, larger image
subsets tend to contain more accurate 3D points than smaller IS. Robust
bundle adjustment weights 3D points according to their accuracy, re-
moving insufficiently accurate points. The latter may lead to a loss of
essential 3D points in case of merging of IS with a large size difference
and, thus, very different accuracies of the 3D points. To avoid such
cases, an additional condition is introduced demanding up to a certain
size, that the merged image subsets should have similar sizes.

4.2. Merging rules

Merging is described by merging rules, which contain information
about image subsets as well as the image pair used for geometry pro-
pagation. The dependencies between rules are described by a directed
acyclic graph, termed rule tree (see Fig. 4). Rules on the same level in
the rule tree are guaranteed to be independent and, thus, a dependency
exists only between rules on different levels.

Hierarchical merging itself is modeled by a weighted undirected
graph, termed image subset graph (ISG). Its nodes correspond to image
subsets and an edge between two nodes exists only if image subsets
corresponding to incident nodes fulfill the necessary condition from
Section 4.1. The weight function e( ) for an edge e connecting the
nodes u and v is defined as

= =e e e( ) IS IS e ( ) ( ),u v

e

c c

e
d c

( )

max( , )

( )d

u v

c (15)

where ISn is an image subset corresponding to node n. The function
e( )d incorporates the size difference between the image subsets to

fulfill the additional constraint given in Section 4.1. A continuous
growth of image subsets is ensured by the function e( )c , which ex-
ponentially increases the priority (i.e., edge weight) based on the
merging status of incident image subsets. The priority depends on the
maximum number of levels ck one of the image subsets has not been
involved in a merging operation.

4.3. Generation of merging rules

The generation of merging rules is formulated as a matching pro-
blem in the ISG, where a matching corresponds to a subset M of pair-

Fig. 3. Image loop comprising the images 1–6 (black lines) and a subloop
consisting of images 1, 2, 3 and 6 (red lines). (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article.)
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wise non-adjacent edges (see Fig. 5). It is termed maximal if no more
edges can be added to M without violating the matching property. A
maximum matching has in addition the largest possible cardinality of M
and, thus, is also maximal. A maximum matching is perfect if each node

of the ISG is incident with one of the edges in M. Finally, a maximum
weighted matching is defined as a matching, which maximizes the sum of
the edges in M.

Merging rules correspond to edges of the ISG. Thus, independent
rules on a single level of the rule tree can be determined by a matching
in the ISG. By contracting edges contained in the matching, a minor of
the underlying ISG is formed. By applying matching followed by edge
contraction recursively, merging rules are generated and the rule tree is
constructed.

Hierarchical merging in Mayer (2014) employs agglomerative
hierarchical clustering to generate the merging rules. It starts with
triplets as separate clusters of 3-IS and forms larger clusters by max-
imizing the inter-cluster distances. Merging rules generated in this way
correspond to rules generated by search for a maximal matching in the
ISG.

However, for the finest granularity perfect matching is required.
Unfortunately, perfect matching requires special graph properties
which are not always given. Instead, we search for a maximum
weighted matching in the ISG. This implies maximal matching and,
thus, leads to merging rules which are at least as good as the rules
generated by Mayer (2014). In the optimal case, maximum matching is
also perfect, providing finer granularity and, hence, better potential for
load balancing.

From the point of view of parallel processing, merging rules can be
defined as tasks and the rule tree as task tree (Korch and Rauber, 2004).

Fig. 4. Rule tree with five levels. Rectangular nodes represents the triplets and ellipses the merging rules.

Fig. 5. Graph Matchings represented by red and blue edges. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 1
System specification.

Processor (CPU) 2 × Intel® Xeon® E5-2643 v3 (6 cores, 3.40 GHz)
Graphic Card (GPU) NVIDIA GeForce GTX Titan Z (5 760 CUDA cores,

705 MHz)
Memory 256 GB
Operating System Windows 10 × 64

Table 2
Image set properties.

Image Set Size Cameras Terrest.
Images

UAV
Images

Aerial
Images

Village Overflight 232 1 ×
UQ St Lucia 351 1 ×
Church 1455 3 × ×

Monastery 1769 3 × ×
Settlement 3664 1 ×
Airfield 6210 2 ×
Village 6405 10 × × ×

Fig. 6. Image set Church (1455 images, 3 cameras) and Monastery (1769 images, 3 cameras) consisting of terrestrial and UAV images.

M. Michelini and H. Mayer ISPRS Journal of Photogrammetry and Remote Sensing 166 (2020) 140–152

146



Optimal processing then corresponds to a task scheduling problem,
where the general version is NP-hard (Bruckert, 2007). Various as-
sumptions and simplifications about tasks and the underlying archi-
tecture are made in practical applications (Davis and Burns, 2011;
Korch and Rauber, 2004). Assuming an architecture with a uniform
memory access, we can neglect the communication overhead. The im-
portant task characteristics in our case remain the partial dependencies
and the varying merging runtime depending on the IS size. Thus, we
employ a dynamic scheduling strategy, which introduces a negligible
overhead but allows for a significantly better utilization of the parallel
processing units.

5. Results

The capability of the proposed approach is demonstrated on image
sets whose properties are specified in Table 2 and a system whose
specification is listed in Table 1. Camera orientations of the image sets,
estimated using the proposed approach, are shown in Figs. 6–9, where
colors represent different camera types. The pyramids correspond to
camera orientations with the apex of the pyramid giving the camera
position and the rotation of the pyramid the camera direction.

Images are subdivided into terrestrial, UAV and aerial. Terrestrial
images were taken with a handheld camera from the ground. Cameras
mounted on a UAV (unmanned aerial vehicle) provide UAV images and
a high-resolution aerial camera mounted on an airplane aerial images.
The latter usually comprise a predefined configuration including
overlap. Thus, they do not suffer from critical camera configurations.
However, terrestrial and UAV images can contain arbitrary camera
configurations, which may lead to strong relative image distortions as
well as critical configurations.

The image set UQ St Lucia comprises a subset of images from the
dataset of Warren et al. (2010), where images were taken by a stereo
camera system mounted on a vehicle. The employed subset contains
images with a distance of approximately one meter forming an image
loop. We have used the provided internal camera parameters for our
tests.

5.1. Loop closing

The potential of the loop closing method (cf. Section 3.4) is

Fig. 7. Image set Settlement (3664 images, one camera) and Airfield (6210 images, 2 cameras) solely comprising UAV images.

Fig. 8. Image set Village consisting of 6405 terrestrial, UAV and aerial images from 10 different cameras.

Fig. 9. Image set Village Overflight as subset of
the image set Village comprising 232 UAV
images.

Table 3
Influence of loop closing on orientation estimation considering the number of
the reconstructed 3D points and the mean reprojection error 0 in pixel. f is the
damping factor described in Section 3.4.

Image set Closed loops f Points 0

UQ St Lucia no – 203 466 0.228
1 10 204 485 0.236
55 0 199 373 0.253

Village Overflight no – 166 993 0.283
4 10 170 472 0.342
110 0 199 182 0.422
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demonstrated on the image sets UQ St Lucia and Village Overflight which
contain simple image loops and, thus, are well suited for visualization.

Orientation estimation of the presented SfM approach is based on
hierarchical merging (Mayer, 2014) which for efficiency reasons ran-
domly removes 3D points before bundle adjustment. However, we
turned off this point reduction allowing all 3D points to be used in
bundle adjustment. This is necessary for a meaningful analysis of the
influence of loop closing.

Changes in the number of 3D points as well as the reprojection error
in dependence on the number of closed loops are listed in Table 3. The
influence of loop closing on mean reprojection error is complex. One
important reason for the higher values is the usage of non-linear bundle

adjustment, which only reduces the error locally. Furthermore, higher
reprojection errors are realistic due to the larger mean track lengths
(see below).

The reduced number of 3D points after loop closing in case of the
image set UQ St Lucia results from the fact, that the same 3D point has
been reconstructed multiple times because of the missing image links.
However, loop closing establishes those missing links leading to a single
3D point. Another reason is the more accurate internal consistency
check due to the multiple links. In this way, wrong 3D points can be
detected more reliably and filtered out.

The influence of the loop closing on the track length is shown in
Fig. 10. A track is a continuous link between feature points

Fig. 10. Influence of loop closing on track lengths. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 11. Estimated camera orientations represented in red for open loops, in green for closed loops with damping factor =f 10 and in blue for closed loops =f 0. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Influence of loop closing on the reconstructed point clouds for the image set Village Overflight.
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corresponding to a 3D point in the scene across multiple images. The
number of images is termed track length. As expected, the number of
longer tracks tends to increase with the number of closed image loops.

Fig. 11 shows the deviations between the estimated camera or-
ientations with and without loop closing. The latter leads to a sig-
nificant deviation at the ends of the image sequence in the image set UQ
St Lucia and, thus, wrong camera orientations due to the accumulated
errors along the elongated image sequence. In case of the image set
Village Overflight, only slight deviations in the camera orientations are
noticeable. However, multiple reconstructions of the same 3D points
lead to double 3D structures with significant deviations, which are
visible in form of double roofs and terrain in Fig. 12.

In summary, loop closing is essential for an accurate and reliable
orientation estimation, especially in case of elongated image sequences.
The tests have demonstrated, that already a few additional links can
improve the quality of the estimated camera orientations as well as the

sparse 3D reconstruction significantly. A higher value of the damping
factor f reduces the computation time and is sufficient to produce
geometrically consistent reconstructions. Depending on the specific
goal, lower values can be employed to establish longer tracks.

5.2. Hierarchical merging of image subsets

In order to experimentally validate the theoretical concepts pre-
sented in Section 4.3 we have compared the number of merging rules in
rule trees generated by the cluster-based method (Mayer, 2014) and our
novel matching-based rule generation method.

The results for several larger image sets are given in Fig. 13. It
shows that the matching-based method is able to generate significantly
more independent merging rules in lower levels of the rule trees. This
leads to lower trees allowing a more fine-grained parallelism. In addi-
tion, it is more likely to find independent rules even across different

Fig. 13. Merging rules per level of the rule tree using the cluster-based (Mayer, 2014) (red) and our novel matching-based (blue) rule ge.neration method. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Framework properties (FE – Feature extraction, BA – Bundle adjustment, M – Merging of image subsets, H – hierarchical, I – incremental).

Framework FE Image Matching BA M

APE GPU (Wu, 2012) Embedding CPU CPU H
COLMAP GPU (Wu, 2012) Vocabulary Tree GPU (Wu, 2012) GPU (Wu et al., 2011) I
VisualSFM GPU (Wu, 2012) GPU (Wu, 2012) GPU (Wu et al., 2011) I
OpenMVG CPU Cascade Hashing (Cheng et al., 2014) CPU CPU I
SAMANTHA GPU GPU CPU H
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levels which can further improve parallelization.

5.3. Comparison with other structure from motion frameworks

The capability of the proposed approach, termed Automatic Pose
Estimator (APE), is compared to the following state-of-the-art frame-
works with properties summarized in Table 4:

VisualSFM 3 (Wu, 2013) is an incremental approach which utilizes
parallelization on a graphic card to accelerate orientation
estimation. However, it scales poorly for large image sets
due to the employed exhaustive image matching, but is
included in the comparison to depict the limitations of
solely an efficient implementation.

COLMAP 4 (Schönberger and Frahm, 2016) is an incremental ap-
proach which is based on similar techniques as Vi-
sualSFM, but employs a vocabulary tree (Schönberger
et al., 2017) for accelerating image matching. We have
used the provided vocabulary trees according to the image
set size for our tests. Because of the efficient im-
plementation as well as up-to-date techniques it employs,
we have considered it as the reference approach in the

comparison.
OpenMVG 5 (Moulon et al., 2013) is an incremental approach which

employs cascade hashing (Cheng et al., 2014) to accelerate
image matching. We have included it in the comparison as
an approach with an alternative image matching tech-
nique to COLMAP.

SAMANTHA (Toldo et al., 2015) is hierarchical approach and a part of
the commercial photogrammetric software 3DF Zephyr6.
We have used it in the comparison as an additional hier-
archical approach besides ours.

Except SAMANTHA, all frameworks are based on SIFT features
(Lowe, 2004). Instead, SAMANTHA employs features which are ex-
tracted according to Lindeberg (1998) and, thus, are similar to SIFT
features.

No additional information in the form of GPS/INS data or a pre-
defined camera configuration has been employed. Internal camera
parameters have been estimated using Exif tags of the images (except
for the image set UQ St Lucia). Because of the large number of potential
parameters as well as the magnitude of parameter combinations and
also the diversity of the frameworks, we have used the standard settings
in each framework assuming that these are the parameter settings most
suitable for general cases.

Table 5
Results of automatic orientation estimation for the image sets described in
Section 5. The runtime t is specified in hours, B is the number of images in the
largest consistent block and N the size of the image set. The last two columns
specify the number of the reconstructed 3D points and the mean reprojection
error 0 in pixels for the largest block.

Image Set Framework t B
N

Points 0

Village Overflight (232
images)

APE 0.08 1.000 46 150 0.29
COLMAP 1.06 1.000 229 431 0.69
VisualSFM 0.29 0.600 22 570 1.04
OpenMVG 1.14 1.000 442 261 0.39
SAMANTHA 0.30 1.000 211 857 1.22

UQ St Lucia (351 images) APE 0.22 1.000 61 289 0.23
COLMAP 1.11 0.530 32 206 0.51
VisualSFM 1.64 0.430 14 295 205.62
OpenMVG 0.12 0.460 7615 0.58
SAMANTHA 0.20 1.000 36 639 0.31

Church (1455 images) APE 0.61 0.999 290 748 0.55
COLMAP 4.31 0.999 560 887 0.95
VisualSFM 10.35 0.198 37 476 0.74
OpenMVG 21.47 0.994 168 4501 0.52
SAMANTHA 5.47 0.970 156 329 3.31

Monastery (1769 images) APE 1.66 0.992 330 749 0.63
COLMAP 5.26 0.997 756 306 0.98
VisualSFM 13.81 0.201 20 585 1.36
OpenMVG 23.59 0.503 1 415 697 0.58
SAMANTHA 12.35 0.994 789 725 8.24

Settlement(3664 images) APE 6.88 0.997 701 765 0.59
COLMAP 14.94 0.999 3 038 212 1.17
VisualSFM 77.93 0.165 49 845 1.50
OpenMVG – – – –
SAMANTHA – – – –

Airfield(6210 images) APE 13.46 0.985 1 191 525 0.50
COLMAP 46.48 0.999 6 099 781 1.17
VisualSFM – – – –

Village(6405 images) APE 7.69 0.976 1 318 265 0.38
COLMAP 26.99 0.992 3 741 066 0.85
VisualSFM – – – –

Table 6
Detailed timing results for automatic orientation estimation for the image sets
described in Section 5. The runtime for feature extraction tm, image linking tv,
merging of the image subsets tr as well as the total runtime = + +t t t tm v r are
given in hours.

Image Set Framework tm tv tr t

Village Overflight (232 images) APE 0.01 0.05 0.02 0.08
COLMAP 0.02 0.63 0.41 1.06
VisualSFM 0.03 0.24 0.02 0.29
OpenMVG 0.21 0.19 0.74 1.14
SAMANTHA 0.09 0.04 0.17 0.30

UQ St Lucia (351 images) APE 0.01 0.18 0.03 0.22
COLMAP 0.01 0.38 0.72 1.11
VisualSFM 0.02 1.29 0.33 1.64
OpenMVG 0.03 0.07 0.02 0.12
SAMANTHA 0.01 0.02 0.17 0.20

Church (1455 images) APE 0.12 0.38 0.11 0.61
COLMAP 0.16 2.56 1.59 4.31
VisualSFM 0.21 10.06 0.09 10.35
OpenMVG 2.41 9.21 9.85 21.47
SAMANTHA 0.83 0.32 4.33 5.47

Monastery (1769 images) APE 0.48 1.04 0.14 1.66
COLMAP 0.24 2.27 2.75 5.26
VisualSFM 0.29 13.38 0.14 13.81
OpenMVG 3.68 13.03 6.88 23.59
SAMANTHA 1.10 1.28 9.97 12.35

Settlement (3664 images) APE 3.42 2.14 1.32 6.88
COLMAP 0.69 6.30 7.96 14.94
VisualSFM 0.80 76.82 0.32 77.93
OpenMVG 12.47 >144 – –
SAMANTHA 3.70 5.19 >144 –

Airfield (6210 images) APE 4.18 6.91 2.37 13.46
COLMAP 0.90 10.53 35.05 46.48
VisualSFM 1.12 209.82 × –

Village (6405 images) APE 1.43 4.34 1.92 7.69
COLMAP 0.50 13.38 13.12 26.99
VisualSFM 0.62 222.25 × –

3 ccwu.me/vsfm, Version 0.5.26
4 github.com/colmap/colmap, Version 3.2

5 github.com/openMVG/openMVG, Version 1.2.0
6 3dflow.net, 3DF Zephyr Aerial, Version 3.503
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Tables 5 and 6 summarize the results for the different frameworks.
The best results have been achieved with APE and COLMAP, where APE
outperforms COLMAP in terms of the runtime. On the other hand, ex-
cept for the image set UQ St Lucia, COLMAP has been able to produce
slightly larger blocks. However, these properties depend on each other,
i.e., the runtime increases for more intense search for missing links.
Overall, APE produces results similar to the state-of-the-art approach
COLMAP demonstrating that there are different means leading to a si-
milar end.

Interestingly, all frameworks, except APE and SAMANTHA, had
problems with the image set UQ St Lucia. They have not been able to
link the complete image set, despite the specification of internal camera
parameters. VisualSFM even failed completely which is indicated by the
large mean reprojection error.

Overall, VisualSFM has shown the worst performance. It failed with
an undefined error during processing of the image sets UQ St Lucia,
Airfield as well as Village. In addition, it has only been able to build
relatively small blocks. It also produces an insufficient number of points
for the image sets Church and Settlement.

OpenMVG scales insufficiently for large image sets. One of the
reasons lies probably in the large number of the extracted features,
which leads to a higher number of reconstructed 3D points in case of
image sets Church and Monastery, but increases the runtime sig-
nificantly. In addition, the lack of parallelization on a graphic card
leads to a relatively high runtime even for feature extraction which has
a linear complexity making this approach inferior to APE and COLMAP.

The cluster-based, hierarchical approach employed in SAMANTHA
starts to become at about 3

4 of the processing progress inexplicably
extremely slow. Consequently, the processing of the larger image sets
Settlement, Airfield as well as Village could not been completed even
after one week.

6. Conclusion

In this paper, an automatic SfM approach for (unordered) image sets
comprising complex configurations has been presented. Apart from
(approximate) internal camera calibration, no other information like
GPS or INS data is required.

We proposed a graph-based method allowing for an efficient and
unsupervised search for image links even in case of strong image dis-
tortions as well as critical camera configurations. In addition, an opti-
mization technique is presented which improves the load balancing
properties of the hierarchical image subset merging, thus, allowing a
better utilization of the parallel processing hardware.

The robustness of our SfM framework concerning various camera
configurations, but also the capability to efficiently handle large image
sets is demonstrated on various complex image sets. Finally, its po-
tential is highlighted by comparison with several state-of-the-art SfM
frameworks.

By being able to produce results with similar speed and quality as
the state-of-the-art approach COLMAP, we demonstrate that different
means can lead to the same end. This gives additional options for future
developments. Particularly, our approach for image linking reduces the
number of pairs and triplets which have to be verified, thus, opening
design options for the use of methods for pairs and triplets which can
deal with wide baselines and, therefore, have a high computational
complexity.
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